ae2f_docs
Mlp.auto.h File Reference
#include <assert.h>
#include <stdlib.h>

Go to the source code of this file.

Macros

#define __ae2f_MACRO_GENERATED   1
#define __ae2f_MACRO_GENERATED   1
#define __ae2f_MACRO_GENERATED   1
#define ae2f_Ann_Mlp_c
#define __ae2f_AnnMlpDel_C(a)
#define __ae2f_AnnMlpMk_C(reterr, retmk, depth, szvector, szswap_opt, act, actderiv, lossderiv, deltastream, outcache, weight, bias, learningrate, learningrate_bias, offset, extra)
#define __ae2f_AnnMlpMk_imp(reg_mk, prm_depth, pprm_szvector, propptr_szswap_opt, lppfn_act_opt, lppfn_actderiv_opt, pfn_lossderiv, propptr_deltastream_opt, propptr_outcache_opt, propptr_weight_opt, propptr_bias_opt, prm_learningrate, prm_learningrate_bias, prm_offset_opt, prm_extra_opt)
 Automatically allocates ae2f_AnnMlp and store its pointer at (reg_mk).m_mkbase.
#define __ae2f_AnnMlpSz_imp(ret_sz, outc, weightc, depth, szswap, act, actderiv, deltastream, outcache, weight, bias)
#define __ae2f_AnnMlpInitWithOutSz_imp(v_mlp, v_init, depth, outsz, weightsz, szvector, szswap_opt, act, actderiv, lossderiv, deltastream, outcache, weight, bias, learningrate, learningrate_bias)
#define __ae2f_AnnMlpInit_imp(v_mlp, v_init, depth, szvector, szswap_opt, act, actderiv, lossderiv, deltastream, outcache, weight, bias, learningrate, learningrate_bias)
#define __ae2f_AnnMlpPredictPrimal_imp(OPER_NEG, OPER_NONE, v_predict, mlp, inp, out, sz, weight, bias, outcache, act_opt)
 layer must be more than 2
#define __ae2f_AnnMlpPredictPrimal(OPER_NEG, OPER_NONE, reterr, mlp, inp, out)
#define __ae2f_AnnMlpPredictStream_imp(v_predict, mlp, inp, out, sz, weight, bias, outcache, act_opt)
#define __ae2f_AnnMlpPredictStream_C(reterr, mlp, inp, out)
#define __ae2f_AnnMlpPredict_imp(v_predict, mlp, inp, out, sz, weight, bias, outcache, act_opt)
#define __ae2f_AnnMlpPredict_C(reterr, mlp, inp, delta)
#define __ae2f_AnnMlpHidDeltaSingle_imp(v_single, slp, weight, delta, iidx)
#define __ae2f_AnnMlpBwd_imp(v_tmp, v_send, slp_then, retdelta_then, deltaseed, actderiv_then, inp)
 delta to delta
#define __ae2f_AnnMlpFollowStream_imp(v_follow, mlp, inp, delta, lenv, outstream, deltacache, weight, bias, lr_w, lr_b, actderiv)
#define __ae2f_AnnMlpFollow_imp(v_follow, mlp, inp, delta, lenv, outstream, deltacache, weight, bias, lr_w, lr_b, actderiv)
#define __ae2f_AnnMlpFollowPrimal_imp(OPER_NEG, OPER_NONE, v_follow, mlp, inp, delta, lenv, outstream, deltacache, weight, bias, learningrate, learningrate_bias, actderiv)
#define __ae2f_AnnMlpFollowPrimal(OPER_NEG, OPER_NONE, reterr, mlp, inp, delta)
#define __ae2f_AnnMlpFollow_C(reterr, mlp, inp, delta)
#define __ae2f_AnnMlpFollowStream_C(reterr, mlp, inp, delta)
#define __ae2f_AnnMlpTrainPrimal_imp(OPER_NEG, OPER_NONE, v_train, mlp, inp, out, out_desired, lenv, outstream, deltacache, weight, bias, learningrate, learningrate_bias, act, actderiv, lossderiv)
#define __ae2f_AnnMlpTrainPrimal(OPER_NEG, OPER_NONE, reterr, mlp, inp, out, out_desired)
#define __ae2f_AnnMlpTrainAutoPrimal(OPER_NEG, OPER_NONE, reterr, mlp, inp, out_desired)
#define __ae2f_AnnMlpTrain_C(reterr, mlp, inp, out, out_desired)
#define __ae2f_AnnMlpTrainStream_C(reterr, mlp, inp, out, out_desired)
#define __ae2f_AnnMlpTrain_imp(v_train, mlp, inp, out, goal, lenv, outstream, deltacache, weight, bias, lr_w, lr_b, act, actderiv, lossderiv)
#define __ae2f_AnnMlpTrainStream_imp(v_train, mlp, inp, out, goal, lenv, outstream, deltacache, weight, bias, lr_w, lr_b, act, actderiv, lossderiv)
#define __ae2f_AnnMlpTrainAuto_C(reterr, mlp, inp, out_desired)
#define __ae2f_AnnMlpTrainAutoStream_C(reterr, mlp, inp, out_desired)
#define __ae2f_MACRO_GENERATED   0

Macro Definition Documentation

◆ __ae2f_AnnMlpBwd_imp

#define __ae2f_AnnMlpBwd_imp ( v_tmp,
v_send,
slp_then,
retdelta_then,
deltaseed,
actderiv_then,
inp )
Value:
{ \
for((v_send) = (slp_then).m_outc; (v_send)--;) { \
actderiv_then(&(v_tmp), inp, v_send, (slp_then).m_outc); \
(retdelta_then)[v_send] = (v_tmp) * (deltaseed)[v_send]; \
} \
}

delta to delta

tparam param

Definition at line 588 of file Mlp.auto.h.

◆ __ae2f_AnnMlpDel_C

#define __ae2f_AnnMlpDel_C ( a)
Value:
free(ae2f_reinterpret_cast(void*, a))
#define ae2f_reinterpret_cast(t, v)
Definition Cast.h:52

Definition at line 38 of file Mlp.auto.h.

◆ __ae2f_AnnMlpFollow_C

#define __ae2f_AnnMlpFollow_C ( reterr,
mlp,
inp,
delta )
Value:
__ae2f_AnnMlpFollowPrimal(&1 ? 0 : 1,&1, reterr, mlp, inp, delta)
#define __ae2f_AnnMlpFollowPrimal(OPER_NEG, OPER_NONE, reterr, mlp, inp, delta)
Definition Mlp.auto.h:785

Definition at line 816 of file Mlp.auto.h.

◆ __ae2f_AnnMlpFollow_imp

#define __ae2f_AnnMlpFollow_imp ( v_follow,
mlp,
inp,
delta,
lenv,
outstream,
deltacache,
weight,
bias,
lr_w,
lr_b,
actderiv )
Value:
__ae2f_AnnMlpFollowPrimal_imp(&1 ? 0 : 1,&1, v_follow, mlp, inp, delta, lenv, outstream, deltacache, weight, bias, lr_w, lr_b, actderiv)
#define __ae2f_AnnMlpFollowPrimal_imp(OPER_NEG, OPER_NONE, v_follow, mlp, inp, delta, lenv, outstream, deltacache, weight, bias, learningrate, learningrate_bias, actderiv)
Definition Mlp.auto.h:615

Definition at line 612 of file Mlp.auto.h.

◆ __ae2f_AnnMlpFollowPrimal

#define __ae2f_AnnMlpFollowPrimal ( OPER_NEG,
OPER_NONE,
reterr,
mlp,
inp,
delta )
Value:
{ \
if((reterr) && *(reterr)) {} \
else unless((mlp) && (inp) && (delta)) { \
assert(0 && "nullref"); \
(reterr) && (*(reterr) |= ae2f_errGlob_PTR_IS_NULL); \
} else { \
ae2f_AnnMlpFollow_t v_follow; \
\
__ae2f_AnnMlpFollowPrimal_imp( \
OPER_NEG, OPER_NONE \
, v_follow \
, *(mlp), inp, delta, (mlp)->m_sz \
, (mlp)->m_outcache, (mlp)->m_deltastream \
, (mlp)->m_weight \
, (mlp)->m_bias \
, (mlp)->m_learningrate, (mlp)->m_learningrate_bias \
, (mlp)->m_actderiv \
); \
} \
}
#define unless(...)
Invokes when condition is false.
Definition Cast.h:103
#define ae2f_errGlob_PTR_IS_NULL
Failed to refer the pointer either l-value inside the function.
Definition errGlob.h:32

tparam param

Definition at line 785 of file Mlp.auto.h.

◆ __ae2f_AnnMlpFollowPrimal_imp

#define __ae2f_AnnMlpFollowPrimal_imp ( OPER_NEG,
OPER_NONE,
v_follow,
mlp,
inp,
delta,
lenv,
outstream,
deltacache,
weight,
bias,
learningrate,
learningrate_bias,
actderiv )

tparam param

Definition at line 615 of file Mlp.auto.h.

◆ __ae2f_AnnMlpFollowStream_C

#define __ae2f_AnnMlpFollowStream_C ( reterr,
mlp,
inp,
delta )
Value:
__ae2f_AnnMlpFollowPrimal(-1, , reterr, mlp, inp, delta)

Definition at line 819 of file Mlp.auto.h.

◆ __ae2f_AnnMlpFollowStream_imp

#define __ae2f_AnnMlpFollowStream_imp ( v_follow,
mlp,
inp,
delta,
lenv,
outstream,
deltacache,
weight,
bias,
lr_w,
lr_b,
actderiv )
Value:
__ae2f_AnnMlpFollowPrimal_imp(-1,,v_follow, mlp, inp, delta, lenv, outstream, deltacache, weight, bias, lr_w, lr_b, actderiv)

Definition at line 608 of file Mlp.auto.h.

◆ __ae2f_AnnMlpHidDeltaSingle_imp

#define __ae2f_AnnMlpHidDeltaSingle_imp ( v_single,
slp,
weight,
delta,
iidx )
Value:
{ \
(v_single).m_ret = 0; \
\
for((v_single).m_i = (slp).m_outc; (v_single).m_i--; ) \
{ \
(v_single).m_ret += \
((weight) + (slp).m_inc * (v_single).m_i)[iidx] * (delta)[(v_single).m_i]; \
} \
}

tparam param

Definition at line 566 of file Mlp.auto.h.

◆ __ae2f_AnnMlpInit_imp

#define __ae2f_AnnMlpInit_imp ( v_mlp,
v_init,
depth,
szvector,
szswap_opt,
act,
actderiv,
lossderiv,
deltastream,
outcache,
weight,
bias,
learningrate,
learningrate_bias )
Value:
{ \
(v_init).m_outc = 0; \
(v_init).m_weightc = 0; \
\
assert((szvector) && "Size vector is null"); \
for((v_init).m_i = (depth); (v_init).m_i--; ) { \
assert((szvector)[(v_init).m_i] && "Zero value is permitted"); \
(v_init).m_outc < (szvector)[(v_init).m_i] && ((v_init).m_outc = (szvector)[(v_init).m_i]); \
if((v_init).m_i == (depth) - 1) continue; \
\
(v_init).m_weightc = \
(v_init).m_weightc < (szvector)[(v_init).m_i] * (szvector)[(v_init).m_i + 1] ? \
(szvector)[(v_init).m_i] * (szvector)[(v_init).m_i + 1] : \
(v_init).m_weightc; \
} \
\
v_mlp, (v_init).m_i, depth, (v_mlp).m_outc, (v_mlp).m_weightc \
, szvector, szswap_opt, act, actderiv, lossderiv \
, deltastream, outcache, weight, bias, learningrate, learningrate_bias \
); \
}
#define __ae2f_AnnMlpInitWithOutSz_imp(v_mlp, v_init, depth, outsz, weightsz, szvector, szswap_opt, act, actderiv, lossderiv, deltastream, outcache, weight, bias, learningrate, learningrate_bias)
Definition Mlp.auto.h:303

tparam param

Definition at line 352 of file Mlp.auto.h.

◆ __ae2f_AnnMlpInitWithOutSz_imp

#define __ae2f_AnnMlpInitWithOutSz_imp ( v_mlp,
v_init,
depth,
outsz,
weightsz,
szvector,
szswap_opt,
act,
actderiv,
lossderiv,
deltastream,
outcache,
weight,
bias,
learningrate,
learningrate_bias )
Value:
{ \
assert((depth) >= 2 && "At lest you need input and output layer"); \
(v_mlp).m_depth = (depth); \
(v_mlp).m_outc = (outsz); \
(v_mlp).m_weightc = (weightsz); \
\
assert((lossderiv) && "loss deriv is null"); \
(v_mlp).m_lossderiv = lossderiv; \
\
(v_mlp).m_sz = (szswap_opt); \
(v_mlp).m_act = (act); \
(v_mlp).m_actderiv = (actderiv); \
\
(v_mlp).m_deltastream = deltastream; \
(v_mlp).m_outcache = outcache; \
(v_mlp).m_weight = weight; \
(v_mlp).m_bias = bias; \
\
(v_mlp).m_learningrate = learningrate; \
(v_mlp).m_learningrate_bias = learningrate_bias; \
\
if((szswap_opt) && (szswap_opt) != (szvector)) \
for((v_init) = (depth); (v_init)--; ) { \
(szswap_opt)[(v_init)] = (szvector)[(v_init)]; \
} \
}

tparam param

Definition at line 303 of file Mlp.auto.h.

◆ __ae2f_AnnMlpMk_C

#define __ae2f_AnnMlpMk_C ( reterr,
retmk,
depth,
szvector,
szswap_opt,
act,
actderiv,
lossderiv,
deltastream,
outcache,
weight,
bias,
learningrate,
learningrate_bias,
offset,
extra )
Value:
{ \
if((reterr) && *(reterr)) {} \
else unless((szvector) && (lossderiv) && (retmk)) \
(reterr) && (*(reterr) |= ae2f_errGlob_PTR_IS_NULL); \
else { \
ae2f_AnnMlpMk_t v_mk; \
__ae2f_AnnMlpMk_imp( \
v_mk \
, depth, szvector, szswap_opt \
, act, actderiv, lossderiv \
, deltastream, outcache, weight \
, bias, learningrate, learningrate_bias \
, offset, extra \
); \
\
assert(v_mk.m_mkbase && "Initialising has failed"); \
*(retmk) = v_mk.m_mkbase; \
unless(v_mk.m_mkbase) { \
(reterr) && (*(reterr) |= ae2f_errGlob_ALLOC_FAILED); \
} \
} \
}
#define ae2f_errGlob_ALLOC_FAILED
stdlib allocating functions (malloc, calloc, realloc) has been failed.
Definition errGlob.h:40

tparam param

Definition at line 40 of file Mlp.auto.h.

◆ __ae2f_AnnMlpMk_imp

#define __ae2f_AnnMlpMk_imp ( reg_mk,
prm_depth,
pprm_szvector,
propptr_szswap_opt,
lppfn_act_opt,
lppfn_actderiv_opt,
pfn_lossderiv,
propptr_deltastream_opt,
propptr_outcache_opt,
propptr_weight_opt,
propptr_bias_opt,
prm_learningrate,
prm_learningrate_bias,
prm_offset_opt,
prm_extra_opt )

Automatically allocates ae2f_AnnMlp and store its pointer at (reg_mk).m_mkbase.

If some parameter has <prop>, it means it's element(or value) will be handled by mlp in future.
> Which means it must be valid at least longer than a class newly allocated.
> Unless a parameter has <prop> with <init>, memory of the given parameter will not be initialised.

<reg> means it has state(which is mutable), and its memory does not require to be allocated linearly.

<opt> means its value could be '0', '\0', 0, 0x0, NULL, or nullptr.

<prm> means it could be primitive value, such as non-variable.

Parameters
[in,out]reg_mk<reg>
Type: ae2f_reg ae2f_AnnMlpMk_t&
Brief: A temporary buffer for this function.
prm_depth<prm>
Type: const size_t
Brief: Depth for this machine willing to allocate.
[in]pprm_szvector<ptr> <const>
Type: const size_t[prm_depth]
Brief: A shape of the model.
[out]propptr_szswap_opt<prop> <ptr> <opt> <init>
Type: size_t[prm_depth]&
Brief: Optional valid buffer for Mlp to store the value of pprm_szvector.
lppfn_act_opt<prop> <ptr> <fn> <opt>
Type: ae2f_AnnActFFN_t[prm_depth]&
Brief: Optional valid buffer for activation function for each layer.
lppfn_actderiv_opt<prop> <ptr> <fn> <opt>
Type: ae2f_AnnActFFN_t[prm_depth]&
Brief: Optional valid buffer for activation derivative for each layer.
pfn_lossderiv<fn> <ptr> <prm>
Type: ae2f_AnnLossFFN_t
Brief: Derivative of loss function for mlp model.
propptr_deltastream_opt<prop> <ptr>
Type: ae2f_float_t[MAX(pprm_szvector) * ((prm_depth) - 1)]&
Brief: Optional delta stream buffer.
propptr_outcache_opt<prop> <ptr>
Type: ae2f_float_t[MAX(pprm_szvector) * ((prm_depth) - 1)]&
Brief: Optional output stream buffer.
propptr_weight_opt<prop> <ptr>
Type: ae2f_float_t[MAXWEIGHT(pprm_szvector) * ((prm_depth) - 1)]
Brief: Optional weight buffer.
Details: To compute MAXWEIGHT, you could find a max value of multiplications of each neighbour.
propptr_bias_opt<prop> <ptr>
Type: ae2f_float_t[MAX(pprm_szvector) * ((prm_depth) - 1)]&
Brief: Optional bias buffer.
prm_learningrate<prm>
Type: const ae2f_float_t
Brief: learning rate for weights.
prm_learningrate_bias<prm>
Type: const ae2f_float_t
Brief: learning rate for bias.
prm_offset_opt<prm> <opt>
Type: const size_t
Brief: Desired gap between structure itself and additional buffers as bytes.
prm_extra_opt<prm> <opt>
Type: const size_t
Brief: Desired extra buffer size as bytes.

tparam param

Definition at line 163 of file Mlp.auto.h.

◆ __ae2f_AnnMlpPredict_C

#define __ae2f_AnnMlpPredict_C ( reterr,
mlp,
inp,
delta )
Value:
__ae2f_AnnMlpPredictPrimal(&1 ? 0 : 1, &1, reterr, mlp, inp, delta)
#define __ae2f_AnnMlpPredictPrimal(OPER_NEG, OPER_NONE, reterr, mlp, inp, out)
Definition Mlp.auto.h:524

Definition at line 563 of file Mlp.auto.h.

◆ __ae2f_AnnMlpPredict_imp

#define __ae2f_AnnMlpPredict_imp ( v_predict,
mlp,
inp,
out,
sz,
weight,
bias,
outcache,
act_opt )
Value:
__ae2f_AnnMlpPredictPrimal_imp(&1 ? 0 : 1, &1, v_predict, mlp, inp, out, sz, weight, bias, outcache, act_opt)
#define __ae2f_AnnMlpPredictPrimal_imp(OPER_NEG, OPER_NONE, v_predict, mlp, inp, out, sz, weight, bias, outcache, act_opt)
layer must be more than 2
Definition Mlp.auto.h:397

Definition at line 560 of file Mlp.auto.h.

◆ __ae2f_AnnMlpPredictPrimal

#define __ae2f_AnnMlpPredictPrimal ( OPER_NEG,
OPER_NONE,
reterr,
mlp,
inp,
out )
Value:
{ \
if((reterr) && *(reterr)) \
; \
else unless((mlp) && (inp) && (out)) { \
assert(0 && "Null"); \
(reterr) && (*(reterr) |= ae2f_errGlob_PTR_IS_NULL); \
} else { \
ae2f_AnnMlpPredict_t v_predict; \
\
__ae2f_AnnMlpPredictPrimal_imp( \
OPER_NEG, OPER_NONE \
, v_predict, *(mlp) \
, inp, out \
, (mlp)->m_sz, (mlp)->m_weight \
, (mlp)->m_bias, (mlp)->m_outcache \
, (mlp)->m_act \
); \
} \
}

tparam param

Definition at line 524 of file Mlp.auto.h.

◆ __ae2f_AnnMlpPredictPrimal_imp

#define __ae2f_AnnMlpPredictPrimal_imp ( OPER_NEG,
OPER_NONE,
v_predict,
mlp,
inp,
out,
sz,
weight,
bias,
outcache,
act_opt )

layer must be more than 2

tparam param

Definition at line 397 of file Mlp.auto.h.

◆ __ae2f_AnnMlpPredictStream_C

#define __ae2f_AnnMlpPredictStream_C ( reterr,
mlp,
inp,
out )
Value:
__ae2f_AnnMlpPredictPrimal(-1, , reterr, mlp, inp, out)

Definition at line 557 of file Mlp.auto.h.

◆ __ae2f_AnnMlpPredictStream_imp

#define __ae2f_AnnMlpPredictStream_imp ( v_predict,
mlp,
inp,
out,
sz,
weight,
bias,
outcache,
act_opt )
Value:
__ae2f_AnnMlpPredictPrimal_imp(-1, , v_predict, mlp, inp, out, sz, weight, bias, outcache, act_opt)

Definition at line 554 of file Mlp.auto.h.

◆ __ae2f_AnnMlpSz_imp

#define __ae2f_AnnMlpSz_imp ( ret_sz,
outc,
weightc,
depth,
szswap,
act,
actderiv,
deltastream,
outcache,
weight,
bias )
Value:
{ \
assert((depth) > 2); \
\
(ret_sz) = sizeof(ae2f_AnnMlp) + (!(szswap)) * sizeof(size_t); \
(ret_sz) += (sizeof(void*) * ((depth) - 1)) * (!(act) + !(actderiv)); \
(ret_sz) += sizeof(ae2f_float_t) \
* ((depth)) * (outc) \
* ( \
!(deltastream) + !(outcache) + !(bias) \
); \
(ret_sz) += sizeof(ae2f_float_t) \
* (!(weight) * (weightc) * (depth)); \
}

tparam param

Definition at line 272 of file Mlp.auto.h.

◆ __ae2f_AnnMlpTrain_C

#define __ae2f_AnnMlpTrain_C ( reterr,
mlp,
inp,
out,
out_desired )
Value:
__ae2f_AnnMlpTrainPrimal(&1 ? 0 : 1, &1, reterr, mlp, inp, out, out_desired)
#define __ae2f_AnnMlpTrainPrimal(OPER_NEG, OPER_NONE, reterr, mlp, inp, out, out_desired)
Definition Mlp.auto.h:884

Definition at line 947 of file Mlp.auto.h.

◆ __ae2f_AnnMlpTrain_imp

#define __ae2f_AnnMlpTrain_imp ( v_train,
mlp,
inp,
out,
goal,
lenv,
outstream,
deltacache,
weight,
bias,
lr_w,
lr_b,
act,
actderiv,
lossderiv )
Value:
__ae2f_AnnMlpTrainPrimal_imp(&1 ? 0 : 1, &1, v_train, mlp, inp, out, goal, lenv, outstream, deltacache, weight, bias, lr_w, lr_b, act, actderiv, lossderiv)
#define __ae2f_AnnMlpTrainPrimal_imp(OPER_NEG, OPER_NONE, v_train, mlp, inp, out, out_desired, lenv, outstream, deltacache, weight, bias, learningrate, learningrate_bias, act, actderiv, lossderiv)
Definition Mlp.auto.h:822

Definition at line 953 of file Mlp.auto.h.

◆ __ae2f_AnnMlpTrainAuto_C

#define __ae2f_AnnMlpTrainAuto_C ( reterr,
mlp,
inp,
out_desired )
Value:
__ae2f_AnnMlpTrainAutoPrimal(&1 ? 0 : 1, &1, reterr, mlp, inp, out_desired)
#define __ae2f_AnnMlpTrainAutoPrimal(OPER_NEG, OPER_NONE, reterr, mlp, inp, out_desired)
Definition Mlp.auto.h:915
See also
__ae2f_AnnMlpTrainAutoPrimal

Definition at line 961 of file Mlp.auto.h.

◆ __ae2f_AnnMlpTrainAutoPrimal

#define __ae2f_AnnMlpTrainAutoPrimal ( OPER_NEG,
OPER_NONE,
reterr,
mlp,
inp,
out_desired )
Value:
{ \
if((reterr) && *(reterr)); \
else unless((mlp) && (out_desired) && (inp)) { \
assert(0 && "nullref"); \
(reterr) && (*(reterr) |= ae2f_errGlob_PTR_IS_NULL); \
} else { \
ae2f_AnnMlpTrain_t v_train; \
__ae2f_AnnMlpTrainPrimal_imp( \
OPER_NEG, OPER_NONE \
, v_train, *(mlp), inp \
, &(mlp)->m_outcache[((mlp)->m_outc) * ((mlp)->m_depth - 2)] \
, out_desired \
, (mlp)->m_sz, (mlp)->m_outcache \
, (mlp)->m_deltastream \
, (mlp)->m_weight, (mlp)->m_bias \
, (mlp)->m_learningrate, (mlp)->m_learningrate_bias \
, (mlp)->m_act, (mlp)->m_actderiv, (mlp)->m_lossderiv \
); \
} \
}

tparam param

Definition at line 915 of file Mlp.auto.h.

◆ __ae2f_AnnMlpTrainAutoStream_C

#define __ae2f_AnnMlpTrainAutoStream_C ( reterr,
mlp,
inp,
out_desired )
Value:
__ae2f_AnnMlpTrainAutoPrimal(-1, ae2f_NONE, reterr, mlp, inp, out_desired)
#define ae2f_NONE
Literally nothing.
Definition Cxx.h:16
See also
__ae2f_AnnMlpTrainAutoPrimal

Definition at line 965 of file Mlp.auto.h.

◆ __ae2f_AnnMlpTrainPrimal

#define __ae2f_AnnMlpTrainPrimal ( OPER_NEG,
OPER_NONE,
reterr,
mlp,
inp,
out,
out_desired )
Value:
{ \
if((reterr) && *(reterr)); \
else unless((mlp) && (out) && (out_desired) && (inp)) { \
assert(0 && "nullref"); \
(reterr) && (*(reterr) |= ae2f_errGlob_PTR_IS_NULL); \
} else { \
ae2f_AnnMlpTrain_t v_train; \
__ae2f_AnnMlpTrainPrimal_imp( \
OPER_NEG, OPER_NONE \
, v_train, *(mlp), inp \
, out, out_desired \
, (mlp)->m_sz, (mlp)->m_outcache \
, (mlp)->m_deltastream \
, (mlp)->m_weight, (mlp)->m_bias \
, (mlp)->m_learningrate, (mlp)->m_learningrate_bias \
, (mlp)->m_act, (mlp)->m_actderiv, (mlp)->m_lossderiv \
); \
} \
}

tparam param

Definition at line 884 of file Mlp.auto.h.

◆ __ae2f_AnnMlpTrainPrimal_imp

#define __ae2f_AnnMlpTrainPrimal_imp ( OPER_NEG,
OPER_NONE,
v_train,
mlp,
inp,
out,
out_desired,
lenv,
outstream,
deltacache,
weight,
bias,
learningrate,
learningrate_bias,
act,
actderiv,
lossderiv )

tparam param

Definition at line 822 of file Mlp.auto.h.

◆ __ae2f_AnnMlpTrainStream_C

#define __ae2f_AnnMlpTrainStream_C ( reterr,
mlp,
inp,
out,
out_desired )
Value:
__ae2f_AnnMlpTrainPrimal(&1 ? 0 : 1, ae2f_NONE, reterr, mlp, inp, out, out_desired)

Definition at line 950 of file Mlp.auto.h.

◆ __ae2f_AnnMlpTrainStream_imp

#define __ae2f_AnnMlpTrainStream_imp ( v_train,
mlp,
inp,
out,
goal,
lenv,
outstream,
deltacache,
weight,
bias,
lr_w,
lr_b,
act,
actderiv,
lossderiv )
Value:
__ae2f_AnnMlpTrainPrimal_imp(-1, ae2f_NONE, v_train, mlp, inp, out, goal, lenv, outstream, deltacache, weight, bias, lr_w, lr_b, act, actderiv, lossderiv)

Definition at line 956 of file Mlp.auto.h.

◆ __ae2f_MACRO_GENERATED [1/4]

#define __ae2f_MACRO_GENERATED   1

Definition at line 2 of file Mlp.auto.h.

◆ __ae2f_MACRO_GENERATED [2/4]

#define __ae2f_MACRO_GENERATED   1

Definition at line 2 of file Mlp.auto.h.

◆ __ae2f_MACRO_GENERATED [3/4]

#define __ae2f_MACRO_GENERATED   1

Definition at line 2 of file Mlp.auto.h.

◆ __ae2f_MACRO_GENERATED [4/4]

#define __ae2f_MACRO_GENERATED   0

Definition at line 2 of file Mlp.auto.h.

◆ ae2f_Ann_Mlp_c

#define ae2f_Ann_Mlp_c

Definition at line 36 of file Mlp.auto.h.